An overview of Nano fibre membranes to deliver natural ingredient or extract for targeted drug-delivery devices

Sukhwinder K. Bhullar¹,²

¹Department of Mechanical Engineering, Bursa Technical University, Bursa, Turkey
²Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

Abstract
Herbal based medicines are used for the treatment of many diseases from ancient times while pharmaceutical chemistry is recently developed. Usually Herbal medicines have been delivered orally in both animals and human. Targeted drug-delivery systems currently more common for the treatment of most life threatening diseases such as cancers. In addition to drug eluting devices many nano based devices delivering active pharmaceutical ingredients or herbal based extracts or particles are growing in demand and they have been approved by FDA and other regulatory bodies. This mini review intends to overview role of nanofibers for the delivery of herbal ingredients and natural plant based extract for the biomedical applications.

INTRODUCTION
Natural products have been used for the treatment of both human and animals diseases since ancient time in India, ancient China, Egypt, Africa and America. Pharmaceutical chemistry and chemical analysis developed in the early 19th century and they started the extraction and modification of herbal ingredients including plant based natural extracts [1-2]. Today herbal medicines in their novel formulations such as nanoparticles, microemulsions, matrix systems, solid dispersions, liposomes and SLNs, nanomicellar system, nanotubes, and colloidal nanogels have been developed to be used alone as well as in combination with other chemotherapeutic agents [1,3-4]. In addition, the current focus of pharmaceutical researchers is towards design, characterization and development of targeted drug delivery systems for herbal medicines to enhance their effect, response and deliver require quantity of drug to targeted diseased area [5-11]. The challenges with herbal drugs delivery such as smashing of some constitutes of herbal drugs in the highly acidic pH of the stomach and metabolization of some constituents by liver prevent the optimum quantity of the herbal drugs to reach the blood [1,12]. Nano Carriers promote their candidature for herbal remedies to deliver required amount of herbal drugs to targeted diseased area overcoming all the obstacles related to deliver their optimum quantity due to their small size and increased surface area. Sharma et al reported [1] that novel nano drug delivery systems for herbal remedies offer (i) reduction in bulk doses; (ii) delivery at the targeted diseased area for major life threatening diseases;(iii) ease and comfort to patients over the traditional available formulation such as large doses but less effective; (iv)ability to deliver high concentrations of drugs to disease sites due to their unique size and high loading capacities and persist at the sites for the longer periods; (v)
enhanced permeation and retention effect; (vi)
reduces side effects and (vii) reduction in the
dose of the drug formulation. Due to significant
results nanomaterials and nanotechnology FDA
and other drug regulatory bodies have approved
many nanoparticles and nanofibers based
devices to deliver active pharmaceutical
ingredients. There is growing demand for further
research to exploit benefits of these devices to
enhance their benefits to improve the quality of
life of patients. Nano fibre membranes offer
their potentials for drug incorporation and drug
release. Here, the main focus of this review is to
present nanofibrous herbal drug delivery
systems.

HERBAL DRUG DELIVERY SYSTEMS
AND NANOTECHNOLOGY

Over the last decades the application of
nanomaterial and nanotechnology have been
growing interest in pharmaceuticals in both
synthetic and herbal medicines. Ultra small size
materials in 1-100nm range have unique
physiochemical properties and interactions with
biological systems while nanotechnology helps
in understanding and control these nano
materials [13]. For drug loading a variety of
ways are used to laod drugs in nanoparticale and
nano fibers such as non woven structures,
absorption and chemical conjugation. The
advantages of nanoparticle based drug delivery
such as improving serum solubility of the drugs,
prolonging the systemic circulation lifetime,
releasing drugs at a sustained and controlled
manner, preferentially delivering drugs to the
tissues and cells. Also, concurrently delivery of
multiple therapeutic agents to the same cells for
combination therapy are reported by the authors
in [14-15]. In addition, they discussed that the
pharmacokinetics and therapeutic index of the
drugs can be significantly improved in contrast
to the free drug counterparts as drug-loaded
nanoparticles can enter host cells through
endocytosis and then release drug payloads to
treat microbes-induced intracellular infections.
Having negligible side effects compared to
synthetic medicines and awareness of physicians
and patients for their benefits, herbal medicines
have been used globally. To increase the
therapeutic values, bioavailability and for the
treatment of chronic diseases like asthma,
diabetes, cancer, other life threatening and
common diseases herbal nano drug delivery
systems can be fabricated with biomaterials
such as synthetic biodegradable polymers,
lipids, and polysaccharides [16]. Some of herbal
based drug delivery systems are given in Table
1.

<table>
<thead>
<tr>
<th>Drug Delivery system</th>
<th>Procedure</th>
<th>Herbals</th>
<th>Biomedical Applications</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouth dissolving tablets</td>
<td>poly-herbal</td>
<td>effective for lung problems and other respiratory ailments like asthma, cardiac distress</td>
<td>[17]</td>
<td></td>
</tr>
<tr>
<td>Matrix tablets or in multi-particulate formulations like microcapsules</td>
<td>a granulated herb and a carrier</td>
<td>active ingredients from the group consisting of hypericin, hyperforin and echinacosides</td>
<td>steady supply of the active components for a sustained period for the treatment of targeted drug delivery to control diseases</td>
<td>[18]</td>
</tr>
<tr>
<td>Microgranules</td>
<td>extrusion-spheronization, fluid air bed process or a coating-pan method</td>
<td>Gingko Biloba</td>
<td>Particularly to supply mixtures of plant extracts to cure diseases</td>
<td>[19]</td>
</tr>
<tr>
<td>Mucoadhesive system</td>
<td>muco-adhesive polymers</td>
<td>Echinacea, Lavender and Mastic gum</td>
<td>sustained release for the treatment of diseases</td>
<td>[20]</td>
</tr>
<tr>
<td>Transdermal films</td>
<td>transdermal drug delivery system (TDDS)</td>
<td>Boswelic acid (Boswellia serrata) and curcumin (Curcuma longa)</td>
<td>for continuous drug administration through skin into the systemic circulation and avoids the first pass metabolism of the drug without the pain associated with injection; offers drug delivery with infrequent dosing via zero-order kinetics; and the therapy can be easily terminated at any time.</td>
<td>[21]</td>
</tr>
<tr>
<td>Herbal-based oral composition for periodic retention within the buccal cavity of a human</td>
<td>the group consisting of gels, pastes and chewing gums.</td>
<td>Radix Polygoni Multiflori, Rhizoma Drynariae, Rhizoma Ligustici Chuanxiong, Calculus Bovis, Indigo Naturalis, Herba Ecliptae, Pericarpium Trichosanthis, Radix Sophorae Flavescentis, Spina Gleditsiae, Radix Angelicae Sinensis, Fructus Mori and Halitum.</td>
<td>to reduce loss of scalp hair and to promote hair growth</td>
<td>[22]</td>
</tr>
<tr>
<td>Shuanghuanglian aerosol (SHLA)</td>
<td>Flos Chrysanthemum Indicum, Flos Lonicera, Herba Houttuynia, Radix Bupleurum and menthene</td>
<td>Flos Lonicera, Fructus Forsythia and Radix Scutellaria.</td>
<td>Anti-inflammatory and antiviral effects; a good curative effect in treating infantile upper respiratory tract infections.</td>
<td>[23]</td>
</tr>
<tr>
<td>Microparticles</td>
<td>formulated by different techniques using chitosan, egg</td>
<td>Gugulipid extract from the oleo gum resin of Commiphora</td>
<td>to reduce the levels of harmful serum lipids in the blood stream.</td>
<td>[24]</td>
</tr>
<tr>
<td>Microcapsules</td>
<td>layer-by-layer adsorption of carrageenan and oligochitosan onto calcium carbonate microparticles with their subsequent dissolving after the treatment of EDTA.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plantain Planta go major and calendula Calendula officinalis L. (PCE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to accelerates gastric tissue repair</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nanoparticles of TCH (traditional Chinese herbs)</th>
<th>drying, mincing, extracting, crushing into liquid particles with ultrasonic wave, filtering and nanometerizing into nanoparticles soliquid with nanometer collider.</th>
</tr>
</thead>
<tbody>
<tr>
<td>peach seed, safflower, angelica root, Szechwan lovage rhizome, Rehmanna root, red peony root, leech, gadfly, earth worm and ground beetle,</td>
<td></td>
</tr>
<tr>
<td>for quick recovery from arterial embolism and diminution of thrombi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sustained-release implant</th>
<th>Chitosan</th>
<th>danshen (Radix Salvia miltiorrhiza),</th>
</tr>
</thead>
<tbody>
<tr>
<td>To promote anastomosing and healing on muscles and tissues at the organic incision site in abdominal cavities.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ArthriBlend-SR</th>
<th>formulation containing herbal extracts and nutrients</th>
<th>Glucosamine sulfate, Boswellin (Boswellia serrata extract) and Curcumin C3 Complex (Curcuminoids from Curcuma longa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>to support healthy joints and connective tissues in the body; natural actives for joint care applications; to support the management of inflammatory conditions such as arthritis and the continuous management of symptoms of arthritis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nanofibers of both biopolymers and synthetic polymers have been successfully fabricated [29] which offer high porosity with large surface area-to-volume ratio and are more appropriate for cell accommodation, nutrition infiltration, gas exchange and waste excretion [30]. Use of herbals including plant extracts, powder and nanoparticles for biomedical applications blended with polymers in form of films or nano/microfibers form is growing interest of researchers due to their biomedical applications. Most of work in literature as illustrated in Table.
is reported by authors in [31-34] for different herbals blended nanofibrous mats with Polycaprolactone (PCL) due to its biocompatibility, biodegradability and good drug permeability for wound healing dressing, targeted drug delivery systems and skin tissue engineering.

Table 2 Herbals blended with polymers

<table>
<thead>
<tr>
<th>Polymer (Nanofibers)</th>
<th>Solvents</th>
<th>Herbals</th>
<th>Biomedical applications</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL/PVP</td>
<td>Chloroform/methanol</td>
<td>crude bark extract of Tecomella undulata,</td>
<td>wound healing and wound dressing</td>
<td>[31]</td>
</tr>
<tr>
<td>PCL</td>
<td>chloroform</td>
<td>aloe vera</td>
<td>Wound dressing applications</td>
<td>[31]</td>
</tr>
<tr>
<td>Gelatin powder</td>
<td>Butanol, dichloromethane, hexane and methanol</td>
<td>Extraction of Centella asiatica</td>
<td>wound healing ability</td>
<td>[32]</td>
</tr>
<tr>
<td>PCL</td>
<td>Dichloromethane (DCM) and N,N-dimethylformamide (DMF)</td>
<td>Shikonin</td>
<td>treatment of wound healing and/or atopic dermatitis</td>
<td>[33]</td>
</tr>
<tr>
<td>PCL</td>
<td>chloroform/methanol</td>
<td>Indigofera aspalathoides, Azadirachta indica, Memecylon edule (ME) and Myristica andamanica</td>
<td>skin tissue engineering</td>
<td>[34]</td>
</tr>
</tbody>
</table>

Conclusion

This review summarizes the most recent development of polymeric herbals incorporated drug delivery system and nanofibers loaded with natural extract. These nano to macro structure promote their candidatures for biomedical applications for wound healing and for the treatment of many other diseases to improve quality of life of patients. A very limited work is done in fabrication and characterization of polymer-herbal blended nanofibers. More work is needed to be done with different biocompatible polymer nanofibers loaded with herbal extracts in their nanoform and exploit their benefits using combination multidisciplinary approach and interdisciplinary research.

References

22. Ma B, Duan X, Wang Z. Clinical and experimental study on Shuanghua aerosol in

33. Jie Han, Hai-Tao Zhang, Li-Min Zhu, Christopher J Branford-White, Electrospun biodegradable nanofiber mats for controlled release of herbal medicine 978-1-4244-2902-2009 IEEE